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Abstract. This paper is dedicated to a tool whose aim is to facilitate process mining 

experiments and evaluation of the repair algorithms. Process mining is a scientific area which 

provides solutions and algorithms for discovery and analysis of business processes based on 

event logs. Process mining has three main areas of interest: model discovery, conformance 

checking and enhancement. The paper focuses exclusively on the tasks of enhancement. The 

goal of the enhancement process is to refine existing process models in order to make them 

conform to given event logs.  The particular approach of enhancement, which is considered in 

the paper, is called decomposed model repair. It is assumed that event logs describe correct 

and up-to-date behavior of business processes, whereas process models may be erroneous. 

The proposed approach consists of several independent modules implementing different 

stages of the repair process. This architecture allows for more flexible repair configuration. 

Moreover, it allows researchers to conduct experiments with algorithms used by each module 

in isolation from other modules. Although the paper is devoted to the implementation part of 

the approach, theoretical preliminaries essential for domain understanding are provided. 

Moreover, a typical use case of the tool is shown as well as guides to extending the tool and 

enriching it with extra algorithms and functionality. Finally, other solutions which can be 

used for implementation of repair schemes are considered, pros and cons of using them are 
mentioned. 
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1. Introduction 

In this paper, a tool for modular process model repair is presented. Architectural 

features and usage examples are provided. 

Process mining [1] is a research area which deals with analysis of information 

systems or business processes by studying corresponding event logs and building 
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process models. The basic idea is that there can be significant improvements of 

existing systems, business operations if event logs and their content are studied 

more thoroughly. Three main aims of process mining are process discovery, 

conformance checking and enhancement [2]. 

The goal of Process discovery is to create a process model, based on an event log. 

That constructed model has to adequately describe the behavior observed in the 

event logs. The process of construction is typically called mining. As a model it is 

possible to use, for example, Petri nets. The challenge of process discovery is the 

hard truth that event logs reflect only a fraction of the overall process. It means that 

there may be activities, events, conditions, decision forks which exist in the initial 

process model, but they are not seen in event logs. For example, rare events in 

processes such as activities undertaken in emergency situations at nuclear power 

stations. Such activities exist, they are strictly regulated by rules and legislation, 

they influence the overall process a lot, but they are extremely uncommon so if an 

event log of a nuclear station is considered they are likely not to be present. Another 

serious issue concerning event logs is errors in them. Some events may be not put 

down in logs, log records might contain incorrect information about actually 

occurred events (i.e. wrong time stamp, event name) or they might be deliberately 

distorted. 

Conformance checking is aimed to check whether a model fits a given event log. 

Because of the reasons presented in the description of process discovery, perfect 

fitness is almost not feasible in practice. Therefore, when discrepancy between a 

model and corresponding event logs occurs, it is desired to assess the significance of 

the deviation and highlight model parts where deviations take place [3, 4]. Some 

types of conformance checking algorithms support assigning weights to skipping 

and adding of events, that somehow indicates the significance of these deviations. 

The reason for applying Enhancement is to improve already existing models by 

using information stored in event logs. Hence, the task here is to alter model, not to 

create an absolutely new one. Typical input parameters for the enhancement 

algorithms are a model and a corresponding event log. According to the presented 

definition, the approach the tool implements is categorized as an enhancement 

approach. 

The remainder of this work is organized as follows. 

In section Process model repair basic ideas behind model repair are described. 

Modular repair approach section explains what modular repair is and how tools 

implementing this approach should be organized in order to achieve the goals.  

In section Tool overview a summary of the tool functionality is reported. 

Section Tool architecture contains information on the framework used during the 

development process, domain analysis and the architecture of the tool. 

Section Use case shows step-by-step usage of the tool. In section Related work 

other tools are considered. 

Section Conclusion concludes the paper. 
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2. Process model repair 

In the field of process modeling not all the processes are of best quality. Usually 

process models are made by experts or obtained as a result of using automated 

model construction algorithms. In the field of process mining a lot of methods have 

been developed to discover models from process logs [1]. Real-life processes in 

information systems are complex and permanently changing.  Thus, it is a very hard 

problem for experts and engineers to keep process models up to date. 

The goal of model repair is to improve the quality of a model. In this paper, fitness 

is understood as a metric of model quality. Fitness is measured using technique 

described in [3]. Model repair has been introduced in [5]. As input for model repair 

a process model M and an event log L are used. If model M conforms to L, then 

there is no need to change M. If M partially does not conform to L, repair method 

has to repair non-conforming parts of M. Conforming parts of the model are kept as 

is. The result is the repaired model M’. 

3. Modular repair approach 

The implementation of the modular repair approach is the foundational goal of this 

work. The key idea is to make a general model repair scheme which will consist of 

several cells connected with strong links. A cell is understood as a placeholder 

where a user can put one of the appropriate algorithms. Cells are of the following 

types: (1) conformance checking cell, (2) decomposition cell, (3) selection cell, (4) 

repair cell, (5) composition cell, (6) final evaluation cell. Each cell type corresponds 

to the step in the modular repair.  

Conformance checking cell is used to evaluate current progress of the repair process 

and indicate whether a current model quality is sufficient. An algorithm in a 

decomposition cell, as it is clear from its name, is responsible for dividing an entire 

model into smaller parts, which are easier to understand, analyze and repair. 

Decomposition for process mining is described in [6]. A selection cell includes an 

algorithm whose aim is to run conformance checking for each model part and 

decide which of them are sufficiently fit. A repair cell can be either a process 

discovery algorithm or some enhancement algorithm; although for generalization 

reasons they are called repairers in the paper. Once the decomposed parts are 

repaired they ought to be merged in order to form a single model. It is done by an 

algorithm located in a composition cell. An algorithm located in a final evaluation 

cell is executed after completion of the entire repair task. At this step several metrics 

are measured in order to assess the quality of the model and the repair. Moreover, 

similarity of the initial and the final models is checked. In the future, visualization 

of model differences will be incorporated. 

At the first step the tool checks whether a model and a log conform to each other. 

The second step is one of the model decomposition methods, which allows for 

splitting the model into parts [7]. At the third step the tool selects conforming and 

non-conforming parts by application of conformance checking method to each part, 
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obtained at the second step with the projection of the event log onto set of activities 

corresponding to this part. The fourth step is the repair step. At this step the tool 

applies a repair algorithm. It can be, for example, simple re-discovery algorithm. By 

applying it the tool obtains a new model from the log part corresponding to a non-

conforming part of the initial model. At the fifth step the tool composes all parts of 

the model into the final model using an appropriate method. The sixth step is the 

final evaluation of the repaired model. Usually, each algorithm has to be wrapped in 

additional code in order to be embedded in a particular cell of the tool. 

This work will not consider the aspects of the methods which can be placed into 

cells. There is a theory behind each step of the repair process. Methods offer a lot of 

settings and options. Because of that, it will be impossible to put all the details in 

one text. The main goal of this work is to propose a software architecture that 

allows for exploring different algorithms and their features in the context of model 

repair. 

4. Tool overview 

The main functionality provided by the tool implies the following aspects: 

• The tool allows users to select a decomposition method which, in their 

opinion, is the most suitable for a given model. 

• The tool makes it possible to choose a repair algorithm. The choice of the 

algorithm is typically based on the properties of the algorithm and a model 

it produces. The task of choosing the best repair algorithm is basically an 

attempt to find appropriate alternative between time needed for the 

algorithm to do its work, presence or absence of so-called silent transitions 

(i.e. transitions that do not correspond to any events observed in an event 

log, but considered to be present because they somehow explain the model 

behavior) and conformance between a given model and an event log. 

• One may specify importance of each metric for a particular repair task. 

This step is essential for automatic evaluation of how well the tool helps 

researchers achieve the desired repair result. 

• Numeric results of the final model evaluation can be stored in CSV file 

either manually or automatically. CSV files are chosen because a lot of 

tools support this format, therefore, it significantly simplifies the further 

analysis or visualization. The evaluation process assesses the following 

metrics: fitness (two approaches for fitness measurement are employed), 

conformance, complexity and a similarity coefficient. 

• The tool is responsible for visualization of each step the tool performs and 

a final model. In the future, the tool will also be fitted with a convenient 

visualization of the difference between an initial and a final model. 

• The tool makes it possible to significantly modify logic the cells use, thus 

extending the tool or adjusting it to a particular circumstance. 
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It goes without saying that despite the existence of some theoretical guidelines, 

choosing the right decomposition and repairing algorithms as well as their settings 

can be extremely complicated and mean, in the worst-case scenario, brute-force 

seeking the right methods. Because of that, one of the tool's aims is to facilitate this 

very tedious process. Moreover, if one is developing or evaluating a repair 

algorithm, it will imply a lot of repetitive executions of it. Hence, the tool facilitates 

this process a lot and is likely to significantly reduce time spent on such tasks. 

4. Tool overview 

4.1 ProM 

The tool is being developed using Java 6 Standard Edition and ProM 6.4 

Framework [8]. ProM 6.4 is an open source framework specially designated for 

implementing process mining algorithms in a standardized way. ProM 6.4 consists 

of the core part and disjoints parts called plugins. The core part of the framework is 

responsible only for uploading available plugins, handling plugins’ life cycle, 

interaction between plugins and basic functions for dealing with graphical user 

interface. Hence, programmers focus exclusively on implementation of algorithms, 

working with file system and visualization of results. The framework is distributed 

under GNU Public License, although some plugins are distributed under different 

licenses. 

Once a plugin is properly configured, ProM automatically finds and uploads it, then 

this plugin is added to the list of all available plugins. In addition, the list of plugins 

demonstrates parameters required by each plugin. By doing this, the framework 

simplifies providing parameters needed for plugins. Nowadays, almost all data types 

for working with Petri nets have been implemented and supplied with visualizers, so 

researchers and developers are eliminated of necessity to implement them from 

scratch. 

Each plugin has so-called context. Context acts as a bridge between plugin and the 

framework because it is the only way plugins can interact and collaborate with 

ProM. For every context child contexts may be created, each of which is designated 

for a specific task. Thus, it is possible to construct a hierarchy of plugin calls from a 

parent plugin. 

Plugins may run either with or without graphical user interface. The former provides 

a rich possibility to interact with user or visualize data, whereas the later enables to 

call other plugins in the background simultaneously with user interaction in the 

main plugin. ProM encourages developers to write extendable and loose coupled 

software, providing a rich set of tools. One of such tools, extensively used in the 

tool, is a mechanism for finding all classes annotated in a special way. Arguably the 

most common way to use annotations is to mark Java classes that contain 

algorithms. One creates an interface for a set of related algorithms, and then 

annotates each of them. After that, they can be easily found and used via 

annotations. 
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Interaction between plugins is accomplished by using a plugin manager. The plugin 

manager provides API for invoking plugins, makes sure that correct context is 

configured for a called plugin. The plugin manager enables not only to invoke 

known plugins but also to look for plugins with specific signature, to invoke them 

and to obtain results of their executions. Despite its promising flexibility and 

convenience, in practice it is generally easier to use conventional method 

invocations, because the API exposed by the plugin manager is a bit unintuitive. 

Furthermore, direct methods calls ensure more readable code. Because of these 

reasons, the direct methods call are preferred in the tool and used wherever possible. 

The core part of a typical ProM processing plugin is a class which contains at least 

one public method. This method must have a special annotation which registers it in 

the ProM framework as a plugin. The name, input and output parameter lists are 

listed inside the annotation. Particular plugin context of a current ProM session have 

to be among the other parameters of the method. 

The tool, which implements the approach presented in this work, is built as a plugin 

for the ProM Framework; therefore architecture of the tool has to fulfill all the 

aforementioned requirements for ProM plugins. We decided to use such an 

approach because the framework already has plugins which take care of discovery 

of Petri nets, event logs import and export, conformance checking as well as 

decomposition plugins, and provides further opportunities to work with the resulting 

data. 

4.2 Preliminary domain analysis 

This section is completely devoted to the analysis of the existing plugins for 

decomposition and model repair, because their usage involved extensive and from 

time to time tricky interaction with ProM and ProM plugin manager. In addition, the 

way how decomposition and repair model plugins are used is of high importance 

because it influences whether the tool is easy to extend. Detailed explanation of how 

conformance checking, final evaluation and the overall infrastructure are made is 

left to the following subsection. 

The core implementation task of this project was to incorporate a dozen of available 

plugins for model repairing, decomposition and conformance checking, that have 

different authors, coding styles and settings. One of the main requirements for the 

resulting architecture was to make it as straightforward and comprehensive as 

possible, though ensure that it is flexible. In addition, we wanted to reuse as much 

of the existing code as possible. It meant that before the development of the tool 

could be started there was a need to scrutinize source code files of existing projects 

which we intended to use. This analysis was focused on 3 most important questions: 

(1) Does the architecture of each plugin follow MVC pattern [9]? (2) How heavily 

does each plugin use ProM-specific classes, tools? For example, can it be easily 

retrieved from ProM and used as some sort of standalone application? Do any of 

plugin show graphical user interface? (3)  What set of parameters is required for 

each plugin? 
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The conducted analysis of repair algorithms revealed that the source code had been 

written in inconsistent way, the majority of plugins do not follow the MVC 

principles, which increased efforts needed for using them. As a result, plugins we 

intended to use were separated into 3 groups according to their coupling with ProM 

and the simplicity of their reuse: 

• Plugins whose execution needs requesting via the plugin manager of ProM. 

Hence, in order to call them we supply plugin name, a list of required 

parameters and types of expected output. Then the plugin manager seeks 

the requested plugin and executes it. Examples of such plugins are Alpha 

miner [10] and ILP Miner [11]. 

• Plugins whose execution can be initiated via usual Java method calls 

without need to delegate this task to the ProM plugin manager. Genetic 

miner [12] and Heuristics miner [13] are placed in this group of plugins. 

• Plugins whose architecture follows the MVC pattern. They are 

characterized by clear separation of actual algorithm and ProM-specific 

parts. Such plugins are more desirable because their usage and extension 

requires less time and effort. Unfortunately, Inductive miner [14] is the 

only plugin which falls into this category. 

The subsequent step was to determine the ways which would allow users of the tool 

to specify parameters for repair algorithms if users wish to do it, otherwise default 

parameters would have to be set. The study of the plugins showed that only Alpha 

miner does not show GUI, whereas others do but have only one screen with settings, 

which allows for significant simplification of the resulting design decisions. 

The situation with decomposition algorithms is a bit easier despite some nuances. 

First of all, they are highly sensitive to the input data. Event logs may include a lot 

of information in order to simplify further log analysis and error detection. ProM 

plugins responsible for projection a net on a log are aware of this information and 

try to make full use of it while projecting a net. By projection in this paper the 

process of extracting events which correspond to a particular model part from the 

entire event log is understood. Despite its high purpose, it is prone to produce rather 

unexpected outcome. It seems they work better and give correct result if event logs 

contain information only about event names. Concerning this issue it is absolutely 

essential to apply some kind of model and event log preprocessing techniques 

before trying to decompose and project a model. Furthermore, model decomposition 

is typically not a one-step process – it requires a number of consequent plugin calls, 

but for the sake of simplicity, covering up this circumstance from the main logic of 

our tool was on the list of the goals. 

On the other hand, all decomposer plugins may be executed without showing GUI. 

In fact, only SESE decomposer [15] has one. Nevertheless, the possibility of 

existence of GUI was considered thoroughly due to extendibility and flexibility 

matters. 

I. Shugurov, A. Mitsyuk. Iskra: A Tool for Process Model Repair. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 

2015, pp. 237-254 

244 

4.3 Usage of decomposition and repair algorithms 

Judging by the results of the analysis of repair plugins we came up with a detailed 

plan on how to abstract from specific implementation details and provide a common 

interface for using these plugins. Of course, each of 3 plugin types (model repairing, 

model decomposition and conformance checking) has its own interface, unique for 

its specific nature. So, the final decision was to write "wrapper" interfaces and 

classes for required plugins. Wrapper is understood as a class which defines a 

common interface and hides the details how actual plugin is invoked. In fact, the 

concept of the adapter pattern [16] was exploited. The tool works only with such 

wrappers without any knowledge how inter-plugin communication is carried out. 

Furthermore, wrappers apply an idea of using annotations, which allows for 

complete deliverance from dependencies of the tool on wrappers and, hence, on 

external plugins. This approach also facilitates extension of the tool: those who are 

willing to incorporate new algorithms do not need gaining access to the source code 

of the tool. The only thing that has to be done is to create a Java class that extends 

either IskraDecomposer or IskraRepairer and marked by the corresponding 

annotation (either @IskraDecomposer or @IskraRepairer).  Then ProM will detect 

this class and our tool will add it to the list of available algorithms. One important 

constraint is that wrappers must have an empty constructor. If a wrapper does not 

have it, the wrapper will not be available. 

 

 

Fig. 1. Repairers hierarchy 

Figure 1 and figure 2 depict the design of repairers and decomposers. Class 

AbstractIskraPlugin is a common superclass for all implemented wrappers. It 

encapsulates plugin's name and indicates that it is a plugin after all. Then, there are 

two abstract classes IskraRepairer and IskraDecomposer which provide a common 

interface respectively for repairers and decomposers. The tool uses only links to 

these classes, not to their subclasses. The architecture has been implemented and 
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proved to be viable. InductiveRepairer, ILPRepairer, SESEDecomposer, 

PassageDecomposer [17] are examples of actual (not abstract) classes. In order to 

save space and make a picture more comprehensible only these classes are shown, 

however half a dozen of others adhere to the architecture and available in the tool. 

 

 

Fig. 2. Decomposers hierarchy 

The typical scenario of using wrappers is: 

1. Method getSettingsComponent is invoked. 

2. If the value returned after the invocation getSettingsComponent is not null, 

then received GUI is displayed to a user. 

3. GUI demonstration means having to save setting by invoking saveSettings 

method. 

4. At this point a plugin is properly configured and is ready to be used. Only 

one thing left to get result – to invoke either repair or decompose. 

It must be mentioned that steps 1-3 are arbitrary. If a user is either satisfied with 

default setting or does not want to show GUI then according to the contract, a 

wrapper supplies defaults settings to a corresponding plugin. If a plugin does not 

have any graphical elements for settings, then getSettingsComponent returns null 

and steps 2-3 are skipped. In case of repair algorithms an object of type 

DecomposedModel, which holds parts of the initial model and an event log for each 

of the parts, is returned. 

4.4 Usage of decomposition and repair algorithms 

A number of algorithms for conformance checking is really limited in ProM. There 

are only 2 prominent algorithms: conformance by replay and conformance using 

alignments, others are mainly variations of mentioned. Thus, there is no urgent need 

to provide really flexible solution. Both of these algorithms are used in the tool. The 

algorithm described in [3] is used as a main conformance algorithm in the tool, it is 

placed in Conformance checking cell. In order to allow convenient and user-friendly 
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usage of this algorithm, the corresponding plugin has been changed slightly. The 

plugin was partly separated from ProM in order to ensure its robustness. Moreover, 

parameters of the plugin include information on a model which is about to be used 

and the original parameter creation mechanism does not permit to create it silently, 

without showing GUI. Because of that reason, parameter classes were supplemented 

with "copy constructors" which take a new model and copy an existing parameter 

adhering it to the new model. Another algorithm is provided as an optional add-on 

and used in a final evaluation cell. The usage of this plugin required to slightly 

change classes related to user interface. 

All discussed cells are parts of the abstraction called repair chain. A repair chain 

represents the very nature of the decomposed repair approach. Each chain implies 

algorithms which correspond to the cell types and then it makes plugin calls in the 

specified order ensuring the work of the tool. The goal of designing repair chains 

was to make a good level of abstractions from which algorithms (cells) are used, 

how they are used, in which order; and to execute every chain with different models 

without need to reconstruct the chain. In order to achieve these objectives, the idea 

of dependency injections is heavily exploited. Decomposition and repair plugins are 

supplied via constructor injection, whereas a model, an conformance checking 

algorithm and its parameters are provided as a method parameters. This discrepancy 

has rather ordinary explanation. Decomposition and repair algorithms represent 

something stable which can be reused over and over again with different models in 

a handy manner. In contrast, a model, a conformance checking algorithm and 

conformance checking parameters are volatile and tightly coupled. 

Introducing a new data type which encapsulates cells tend to make the tool more 

flexible and easier to modify, maintain and extend because of the following reasons. 

Using abstract data types and dependency injection during the development ensured 

that each particular chain may be implemented in a way which differs a lot from 

others. For instance, repair chains may use different triggers to decide when a 

repaired model is good enough, although the main reason for having separate repair 

chains is a fact that there are a few of possible strategies of how to choose a model 

part to be repaired. Some strategies are straightforward – just take a part with the 

worst fitness, whereas others may use sophisticated techniques, preprocessing and 

more intelligent choice. However, details, ins and outs of these strategies are out of 

scope of the paper due to their theoretical nature, the main point here is to establish 

that different repair chains are possible and that the tool has to provide capability of 

introducing new repair chains. 

It allows users to create several chains which differ in algorithms used in cells and 

then run all of them at a time. The feature makes testing of several algorithms and 

their parameters against the same model a lot faster. In order to achieve it 2 plugins 

are available. One of them, Iskra chain generator is responsible for creating repair 

chains – one selects desired repair chains, algorithms and their parameters. In 

contrast with a main plugin which creates a chain and then immediately executes it, 

chain generator returns a list of configured chains to the ProM resource pool rather 
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than execute them. At the moment when all desired chains are built, one may supply 

them to Iskra chain runner plugin. This plugin takes an arbitrary number of repair 

chains, a model and a corresponding event log, after that the plugin configures 

settings of conformance checking and sequentially executes each chain. This 

functionality has already been implemented, although it needs some refinement and 

improvements. 

In order not to have hard-coded chains and plugins around chains a mechanism of 

annotations and reflective calls was introduced, as used for decomposition and 

repair wrappers. It enriches the tool with the ability to load repair chains 

dynamically. Moreover, it lets other developers and researcher to develop new 

chains, incorporate them in the tool. A Java class which implements repair chain 

logic has to extend RepairChain interface and be annotated with @Chain. 

4. Use case 

As an example of a usage a simplified version of an iteration of a typical agile 

development process is considered. All activities of the developers are recorded in 

event log, thus allowing for keeping track of what the team does and analysis of the 

development process. Initial business process involves writing and running tests 

after writing code is completed. Then, a developers team informally decides to try 

test-driven development [18], thus creating tests before writing code. These changes 

are reflected in event logs. After a while a conformance checking algorithm is 

applied and it reveals that the actual process does not conform to what a company 

considers as an actual process. Hence, it is necessary to apply repair algorithm in 

order to learn what has changed and build a proper model of the process. 

 

 

Fig. 3. Illustration of repair 
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In order to repair a model one needs to select appropriate plugin and supply an 

existing model and an event log. Plugin's graphical interface used for specifying 

settings is shown in figure 4. Then one selects desired algorithms of decomposition 

and repair. Moreover, one sets minimal fitness a repaired model should have. In the 

example, desired fitness is 0.98. The next step is to select an appropriate repair 

chain from the list of chains. Afterwards, one is asked to specify setting of each 

selected algorithm, and after that repair process is executed. Once it is finished, a 

screen with results is shown; it looks like in figure 3. This screenshot demonstrates 

the result of repair and final evaluation of the considered example of agile iteration 

and clarifies where the change took place and what exactly has changed. As a 

modeling language Petri nets are applied. It is clear from the screenshot that fitness 

increased from 0.7689 to 1, which means that the repair model perfectly fits the 

given event log and the goal of achieving fitness not smaller than 0.98 has been 

successfully accomplished. Furthermore, values of others metrics are shown on this 

screen. 

 

 

Fig. 4. Plugin settings 

5. Related Work 

The idea of providing a way to chain executions of several plugins or algorithms in 

a handy way, which is explored in this paper, is also similar to scientific workflow 

systems. Two of such systems capable of dealing with process mining are 

considered here. 

First tool is RapidProM [19] which is a ProM extension for RapidMiner [20]. It 

allows users to build plugin chains in a visual way. Quite a number of ProM Plugins 

are available in this extension, however not all of them. It can easily be installed via 

RapidMiner Marketplace. The only question is its ability to be extended. 
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RapidProM does not support native ProM plugins and ProM mechanism for loading 

plugins, therefore plugins come only from the authors of RapidProM, which makes 

the objective of creation and execution of schemes, such as those discussed in the 

paper and possible in the presented tool, much harder. 

Then comes DPMine Workflow Language [21] and DPMine/P framework which 

provide a new modeling language which natively supports notion of execution. 

Implementation of the ideas defined in the language is written in C++ with usage of 

Qt library. Process models can be constructed using convenient graphical user 

interface. Furthermore, the solution is intended to be easily extended by adding 

plugins. The advantage of using C++ is possibility to utilize resources in more 

effective and flexible way and provide better performance, which is of high 

importance in the era of Big Data, but the downside is that it cannot be integrated 

with ProM, so it is deprived of algorithms the ProM system offers. 

6. Conclusion 

In this paper, a tool for decomposed model repair is described. Decomposed model 

repair is used as a way of model enhancement. The tool is implemented as several 

plugins for the ProM Framework, which guarantees that the tool can be easily 

distributed and used by both researchers and developers within ProM community. 

The way the tool is written allows for fast improvement and enhancement of it. 

While developing the tool advantages and disadvantages of existing tools were 

examined. The tool does not have some drawbacks typical for its counterparts. 

However, there is still room for improvements. In the future the tool will be fitted 

with more sophisticated mechanism of repair chains. Furthermore, a handy 

visualization of differences between initial and repaired models, some kind of 

recommender systems which suggests better repair options according to properties 

of a model and an event log will possibly be developed and incorporated. 
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Аннотация. В данной работе представлена программа для проведения экспериментов 

в области process mining и тестирования алгоритмов починки моделей. Исследователи 

в области Process mining разрабатывают и применяют алгоритмы и подходы для 

извлечения и анализа бизнес процессов, которые основаны на анализе логов событий. 

Выделяют три основных области в рамках process mining: извлечение процессов, 

проверка соответствия моделей и логов событий и усовершенствование моделей. В 

данной статье рассматривается один из способов усовершенствования моделей, 

называемый починкой моделей процессов. Починка модели процесса необходима в 

случаях недостаточного соответствия существующей модели заданным логам событий 

реального процесса. Предполагается, что логи событий отражает правильное и 

актуальное поведение бизнес-процессов, в то время как модели процесса могут быть 

ошибочными. В статье рассматривается реализация модульного подхода для починки 

моделей. Предлагаемый подход предполагает реализацию программы, состоящей из 

нескольких независимых модулей, реализующих различные этапы процесса починки 

модели процесса. Подобная архитектура позволяет добиться более гибкой 

конфигурации починки, а также обеспечивает возможность проведения экспериментов 

по выбору алгоритмов, применяющихся в каком-либо модуле, в изоляции от других 

модулей. Несмотря на то, что основной целью статьи было описание особенностей 

реализации программы, теоретические основы модульной починки моделей процессов 

рассмотрены на уровне, достаточном для понимания подхода. Более того, рассмотрены 

сценарии использования программы и описаны способы её расширения 

дополнительными алгоритмами и функционалом. Приведен обзор существующих 

модульных решений, которые могут быть использованы для усовершенствования 
моделей процессов, обсуждены их достоинства и недостатки. 
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